19 research outputs found

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells

    No full text
    Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3'-oxime (6BIO) and 7-bromoindirubin-3'-oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G2/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics. © 2012 Elsevier Inc

    Phenoxodiol, an anticancer isoflavene, induces immunomodulatory effects in vitro and in vivo

    No full text
    Phenoxodiol (PXD) is a synthetic analogue of the plant isoflavone genistein with improved anticancer efficacy. Various properties and mechanisms of action have been attributed to the drug, the most important being its ability to sensitize resistant tumour cells to chemotherapy, which led to its fast track FDA approval for phase II/III clinical trials. In this study, we examined the effects of PXD on human peripheral blood mononuclear cells (PBMC) and its potential role in regulating immune responses. We show that PXD, at concentrations ≥1 μg/ml (4 μM), inhibited proliferation and reduced the viability of healthy donor-derived PBMC. In contrast, lower PXD concentrations (0.05-0.5 μg/ml) augmented, upon 3-day incubation, PBMC cytotoxicity. Experiments with purified CD56 + lymphocytes revealed that PXD enhanced the lytic function of natural killer (NK) cells by directly stimulating this lymphocytic subpopulation. Furthermore, in an in vivo colon cancer model, Balb/C mice administered low-dose PXD, exhibited significantly reduced tumour growth rates and prolonged survival (in 40% of the animals). Ex vivo results showed that PXD stimulated both NK and tumour-specific cell lytic activity. We conclude that PXD, when administered at low concentrations, can act as an immunomodulator, enhancing impaired immune responses, often seen in cancer-bearing individuals. © 2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

    LiSIs: An online scientific workflow system for virtual screening

    No full text
    Modern methods of drug discovery and development in recent years make a wide use of computational algorithms. These methods utilise Virtual Screening (VS), which is the computational counterpart of experimental screening. In this manner the in silico models and tools initial replace the wet lab methods saving time and resources. This paper presents the overall design and implementation of a web based scientific workflow system for virtual screening called, the Life Sciences Informatics (LiSIs) platform. The LiSIs platform consists of the following layers: the input layer covering the data file input; the pre-processing layer covering the descriptors calculation, and the docking preparation components; the processing layer covering the attribute filtering, compound similarity, substructure matching, docking prediction, predictive modelling and molecular clustering; post-processing layer covering the output reformatting and binary file merging components; output layer covering the storage component. The potential of LiSIs platform has been demonstrated through two case studies designed to illustrate the preparation of tools for the identification of promising chemical structures. The first case study involved the development of a Quantitative Structure Activity Relationship (QSAR) model on a literature dataset while the second case study implemented a docking-based virtual screening experiment. Our results show that VS workflows utilizing docking, predictive models and other in silico tools as implemented in the LiSIs platform can identify compounds in line with expert expectations. We anticipate that the deployment of LiSIs, as currently implemented and available for use, can enable drug discovery researchers to more easily use state of the art computational techniques in their search for promising chemical compounds. The LiSIs platform is freely accessible (i) under the GRANATUM platform at: http://www.granatum.org and (ii) directly at: http://lisis.cs.ucy.ac.cy. © 2015 Bentham Science Publishers
    corecore